Inflammation Caused By Radiation Drives Triple-Negative Breast Cancer

While radiation is successfully used to treat breast cancer by killing cancer cells, inflammation caused as a side effect of radiation can have a contrary effect by promoting the survival of triple-negative breast cancer cells, according to research published by Jennifer Sims-Mourtada, PhD, Director of Translational Breast Cancer Research at ChristianaCare’s Helen F. Graham Cancer Center & Research Institute (Int J Radiat Biol 2020;1-14). Accounting for 15–20 percent of all breast cancers, triple-negative breast cancer is faster growing than other types of breast cancers.

Sims-Mourtada’s latest study brings scientists closer to understanding the mechanisms behind this aggressive and hard-to-treat cancer. It shows that inflammation caused by radiation can trigger stem-cell-like characteristics in non-stem breast cancer cells. “This is the good and the bad of radiation,” Sims-Mourtada stated. “We know radiation induced inflammation can help the immune system to kill tumor cells—that’s good—but also it can protect cancer stem cells in some cases, and that’s bad.”

“Another exciting finding is we’re learning more and more that the environment the tumor is in—its microenvironment—is very important. Historically, research has focused on the genetic defects in the tumor cells. We’re now also looking at the larger microenvironment and its contribution to cancer.”

The term triple-negative breast cancer refers to the fact that the cancer cells don’t have estrogen or progesterone receptors and also don’t make too much of the protein called HER2. The cells test “negative” on all three tests. These cancers tend to be more common in women under age 40, who are African-American or Latina, or who have a BRCA1 mutation.

“My work focuses on cancer stem cells and theirorigination,” Sims-Mourtada said. “They exist in many cancers, but they’re particularly elusive in triple-negative breast cancer. Their abnormal growth capacity and survival mechanisms make them resistant to radiation and chemotherapy and help drive tumor growth.”

She and her team applied radiation to triple-negative breast cancer stem cells and to non-stem cells. In both cases, they found radiation induced an inflammatory response that activated the IL-6/Stat3 pathway, which plays a significant role in the growth and survival of cancer stem cells in triple-negative breast cancers. They also found that inhibiting STAT3 blocks the creation of cancer stem cells. Still unclear is the role IL-6/STAT3 plays in transforming a non-stem cell to a stem-cell.

“At ChristianaCare, we are advancing cancer research to help people in our community today, while we also advance the fight against cancer nationwide,” said Nicholas J. Petrelli, MD, Bank of America Endowed Medical Director of the Helen F. Graham Cancer Center & Research Institute. “Dr. Sims-Mourtada’s research is a dramatic step toward better treatments for triple-negative breast cancer.”

To advance her research on inflammation, last year Sims-Mourtada received a grant from the Lisa Dean Moseley Foundation. The 3-year grant will enable her and her team at the Cawley Center for Translational Cancer Research to continue investigating the role of cells immediately around a tumor in spurring the growth of triple-negative breast cancer and a possible therapy for this particularly difficult cancer.

“Our next step is to understand the inflammatory response and how we might inhibit it to keep new cancer stem cells from developing,” Sims-Mourtada said.

Her research team previously identified an anti-inflammatory drug, currently used to treat rheumatoid arthritis, that has the potential to target and inhibit the growth of cancer stem cells and triple-negative breast cancer tumors. That research could set the stage for clinical investigation of the drug, alone or in combination with chemotherapy, to improve outcomes for patients with triple-negative breast cancer.

But she said the key was that TDXD was a really active drug. “I don’t think people should be afraid to use it. Overall, it is a another really exciting addition.” She was optimistic it would join the “tool-box” for patients with HER2-positive disease in the near future. “I want to have as many possible active options for my patients.”

Discussion

Commenting on the findings, Priyanka Sharma, MD, Professor of Medicine in the Division of Medical Oncology at the University of Kansas Medical Center in Kansas City, who wrote a commentary article on emerging HER2 therapies in the same edition of the New England Journal of Medicine, told Oncology Times this single-arm open-labelled trial had shown “very remarkable” results. “It clearly demonstrated quite robust efficacy. And that led to approval of the drug in December. But there were some unique toxicities,” she said.

“The main toxicity that we are all talking about and are cautious about is interstitial lung disease, which was seen in about 15 percent of patients and actually lead to death in about 2 percent of patients. So, it was a serious toxicity. And it was not entirely clear why this toxicity was noted, which patients are most likely to suffer this toxicity, and how we should treat and manage it.”

“So, we have to use judgment. And that requires close monitoring for signs and symptoms of interstitial lung disease (which is pulmonary symptoms, imaging abnormalities), and also paying close attention to baseline risk factors for interstitial lung disease before you recommend this drug. But clearly it is quite efficacious, and it will be used,” Sharma explained.

Peter M. Goodwin is a contributing writer.